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Takens-Bogdanov random walks
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Takens-Bogdanov bifurcations have linearized dynamics that are nondiagonalizabfarilihearresponse
of such systems to perturbations is quite distinct from systems with diagonalizable linearizations. While
Takens-Bogdanov systems are of central importance in the theory of local codimension-two bifurcations, their
physical relevance is unclear because they are topologically fragile. Only those properties that are robust under
the breaking of the exact degeneracy required for nondiagonalizability are likely to have any physical signifi-
cance. In this paper we consider the steady-state noise response of degenerate and nearly degenerate nodes in
N dimensions. Escape times are computed for the subcritical case and shown to obey scaling relations that are
different from those of normal systems. The scaling behavior at high noise levels can be extracted from the
related Fokker-Planck equation and is robust to weak breaking of the exact degeneracy.
[S1063-651%98)10704-3

PACS numbefs): 05.40+j, 02.50.Ey

I. INTRODUCTION In applications, low-dimensional models are often derived
via Galerkin projection, or some other reduction scheme,
In this paper we shall be interested in the noise responsento the center manifold of the much larger—often infinite-
of nonlinear systems that, when linearized about a stabldimensional—systerf3,9]. The connection between the bi-
fixed point, are either nondiagonalizable or very nearlyiso furcation behavior of the low-dimensional model and the
numerical analysis such linear systems are callecbndi-  original high-dimensional dynamical system must be care-
tioned. In the bifurcation literature these systems are said tqy|ly established, especially when the low-dimensional sys-
be of “Takens-Bogdanov” typgl,2]. Such bifurcations are tem is nearly degenerate and, hence, structurally fragile in a
known to occur in low-dimensional models of bounded sheatqgogical sense. For example, if we nonlinearly perturb the
flows near the laminar or turbulent transitipa—8|. They dynamical systen{l) about the neutral threshole=0 the

also arise in aeroelastic flutter modé¢®y, and stall models degenerate node can convert into a nondegenerate node, a
for turbines[10]. For a discussion of the related degenerate . : "
Hopf bifurcation, the reader is referred to Relfs1,17], saddle, a stable or unstable spiral. The interested reader is

A a simple oxample, consier e o-dmensiiad)  SCTSG 0 e Wieind degah o b ST bl
linear flow associated with a stable degenerate node: W variety Vi ur. su u

folding diagram reveals how the degenerate topology is

X —e 1\/x modified as parameters are varied. It is possible, however,
1 :( ) 1. (1) that a fragile topological structure can be accompanied by
X2 0 —¢/iX other physically relevant aspects of the dynamics that behave

in a smooth and well-behaved manner. What is meant by

h h h i d the22matrix i di “physically relevant” depends upon the problem of interest.
as a pure shear character an matrix IS nondiago- Here we examine how Takens-Bogdanov systems respond
nalizable. If one is interested in the bifurcation characteris-

tics of this system when nonlinear terms are added, then ontg noise driving, using the degenerate node of @yas our

is led to the theory of normal forms. It is remarkable that,mOdeI' This noise might represent couplings to degrees of

although the theory of normal forms was introduced by Poin_freedom that have been projected out by the reduction pro-

careand Birkhoff, the normal form analysis for E€l) was cedure, or the influence of the environment. We focus pri-
not carried out until the 19708,2] (see Chapter 7 of the marily on the linearly stable regime>0 and the subcritical

most recent edition dfi3] for a very complete discussiopn ~ ¢@se, where the addition of nonlinearity introduces a basin
boundary in the vicinity of the node. This implies that, al-

though the system is linearly stable, itnenlinearlyunstable
*Electronic address: tracy@physics.wm.edu to perturbations of sufficient size to cross the basin bound-
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The threshold for linear instability is=0, where the flow

tang@chaos.ap.columbia.edu how the average escape time,depends on various param-
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Although the linearly stable case is the focus of this pa- A1 L 0
per, some of our results are similar to those for the linearly
unstablecase, in particular the scaling behavior of the escape
time 7 at high noise levels. This is because at high noise A= - . (4)
levels the system does not “see” the small stable basin sur- : 1
rounding the fixed point, even if it exists, and is instead )
guided by the larger-scale structure of the phase space flow o ... A
in the vicinity. We mention in particular that for chaotic ) ] ] o
systems with homoclinic tangencies, Sae¢rl. [13] also  Aside from the diagonal immediately above the main diago-
report power law behavior for thehadowing timewhich is nal, filled here with 1's, all qther off-_dlagonal terms indi-
the unstable analog of the escape timadiscussed below. Cated by dots are zero. The eigenvakis assumed real and
The escape time scaling for the linearly unstable case is con-><1, hence the fixed point is either a degenerate nade (
sidered here, briefly, in Sec. V. >0), or a degenerate flip node.£0). The exact degen-

Our results show that the noise response of degeneratéfacy of the eigenvalues and the uniformity of the off-
and nearly degenerate, nodes is quite different from the nodiagonal coupling makes the analysis tractable. The resulting
mal situation where the linearized dynamics is far from de-scaling relations were then tested numerically and found to
generacy. In addition, the statistical behavior of the systenpe robust if the degeneracy and uniformity are only approxi-
varies smoothly in the vicinity of degeneracy. In this senseMate. The treatment of more general upper triangular matri-
the structural instability of the phase space topology is les§es Will be discussed elsewhere. It is easy to verify that the
important than one might imagine because the noise “frees’@bove matrix has only one eigenvectdrlies in thex; di-
the System from having to S|avish|y follow the under|ying reCtiOf’), and is therefore not diagonalizable. Neutral Stablllty
topology. The dynamics is then guided by coarser features d¥ccurs whem =1.
the phase space flow, which are relatively robust. In previous work 16] we studied the impulse response of

Random walks with degenerate linear terms appear not t§e degenerate node using a normal form analysis, in Takens
have received much attentigt4]. Aside from the work of ~and Bogdanov fornj1-3]. It is possible to show that near
Farrell etal. [5] on the stochastically driverinearized threshold §{~1) the dominant nonlinear term is of the form
Navier-Stokes equations we are not aware of any previous
work in the literature.(We mention, however, the recent X;(m+ 1)=Ajkxk(m)+bx2(m)5jN. (5)
work of Saueret al.[13], and Jaeger and Kanf15], which
deal with the effect of noise on nonhyperbolic chaotic sys-As discussed i3], Takens arrived at this resultor the N
tems. These, however, are globally unstable while we are=n=2 case using the technique ofopological blowup
interested in the effect of noise on a stable fixed ppint. while our work of[16] used asymptotic balance arguments.

Here we consider simplified discrete-timenlinearmod-  If this dominant nonlinear term is absent, then one must sys-
els in an attempt to gain general insight, though the form otematically search for the subdominant nonlinearities, a rich
Eq. (4) was suggested by some low-dimensional models ofopic in itself and well outside the range of the present paper.
shearflows discussed irf7]. Maps have the distinct advan- For the purposes of this paper, we will $et1 and assume
tage of allowing one to generate large ensembles and look #tat the dominant nonlinearity is quadratic<2). The di-
very long-time behavior. mensionalityN is arbitrary.

The outline of the paper is as follows: in Sec. Il the noise- Now write \=1— ¢ and usee as the bifurcation control
free case is discussed. The steady-state noise response is gigrameter. Since the nonlinear coupling constant is positive,
cussed in Sec. lll and numerical results for the exactly deit is easy to show that E¢5) now has a second fixed point at
generate case presented. The results are easily understood in
terms of a few simple scaling r_elations discussed in Sec. IV. X1s= €V]  Xos= €X1s) Xgs= €Xog) ... . (6)

In Sec. V the effects of breaking the exact degeneracy are
examined. In this section the linearjnstablecase is also | inearizing about this second fixed point shows that it is of
briefly considered. We end with a short summary in Sec. Vlggqgle type[More precisely, the eigenvalues of the linear-
ized matrix can have imaginary parts Of(e), but one of
Il. BASIC THEORY: NOISE-FREE DYNAMICS them is always real and greater than one and its unstable
manifold connects back to the node, forming the “saddle-
sink connection”]

The stable manifold of the saddle forms the basin bound-

. —_r ) _ ary. The degeneracy of the node causes the saddle to also be
X(m+1)=Fx(m);p), m=012..., @ nearly degenerate, which forces the basin boundary to lie
wherex,F e RV, F is a smooth vector function of, andpis  close to the node. The distance of closest appreacis the

a bifurcation control parameter. Suppdadas a fixed point threshold for finite amplitude impulsive perturbations to
x, (p), which we take to be the origin. Taylor expanding to drive the system unstable. This is summarized in Fig. 1. The

Consider a nonlinear discrete-time dynamical systeiM in
dimensions:

first order inx gives (repeated indices are summed shape of the triangl®©AS is determined by the transient
linear amplification factor, which can be estimated as fol-
X[(m+1)=Apx(m), j=1,2,...N, (3)  lows[16]: at the initial time,m=0, give the system a kick in

the x5 direction of magnitude &,, hence Xxq
with A=VF|,_,. We takeA to be of Jordan block form: =(0,0, ... 8,)" whereT denotes transpose. Aften time
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FIG. 1. The geometry of the basin boundary in the neighbor-

- ion. -0.005
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steps this initial condition moves tq(m)=A"x,, therefore

X1(m)=[A™]1np. Some algebra shows that FIG. 2. Typical random walk behavior for a 2D map.
[A™];n= m ))\mHN. 7) cape time quickly grows without bound as the noise level is
N-1 reduced below a critical values,,. An estimate is devel-

oped in Sec. IV foro i, -
Figure 2 illustrates the moderate- and low-noise regimes
for the 2D case with bifurcation parameter=0.1. (The
X1| mas~ o€ . (8)  high-noise walker would leave the figure in a single time
step) The unshaded region consists of those points which,
(Note that this is also valid fol=1.) The maximum occurs with no noise present, eventually asymptote to the node at
on a time scale of-N/e. The ratio|X;| max/&% is of the same the origin. The smooth curves starting at the bottom of the

Takingh=1— €71, rewritingm=t/e with t~0O(1), and us-
ing (1—e)Vs~e ' ase| 0 leads to

order asx;s/o, which leads to an estimate of. : figure represent orbits of the undriven dynamics, with the
N-1 four orbits lying in close proximity to the basin boundary
Oc~ € : (9 drawn in heavier weight to emphasize the stable and unstable

. . . . manifolds of the saddle point. Note that the scale andk;
This scaling behavior was tested numerically[i6] and scale differ by a factor of. The saddle poinfat (X;c,Xy.)

found to hold with high precision even if the degeneracy was , N N+1 X .
weakly broken. This summarizes the impulse response of thg(e € ")] and the point of closest approach of the basin

. oundary to the nodgat (X;¢,X2c) = (0,0¢) = (0,e2N"1)] are
undriven system. indicated by the open diamonds.
The orbit marked 1 is a moderate-noise random walk with
o,=0.. Notice that it leaves the basin in the vicinity of
Now consider the steady-state noise response. That is, E1c:X2c), having been “urged” in that direction by the de-
(5) is modified by adding a noise driver: terministic part of the dynamics. It leaves the basin in a time
of O(2/e), then follows the unstable manifold of the saddle
Xj(m-+ 1)=Aikxk(m)+x§(m) Sint m;(m) (10 out to large amplitudes.
_ N o ) __ The orbit marked 2 is a low-noise orbit with,= oy,
with e R"™. The noise is assumed to be Gaussian white with— (v2/3)e?N~12 je., the noise threshold where escape shuts
correlation tensof 7(n) #'(M))= 05 5mal, andl the NXN  off (estimated in Sec. I\ Notice that the random walk is
identity matrix. The use of a more general form of white- confined to the saddle-sink connection. The walker has not
noise correlation tensor merely complicates the algebra withescaped after fGterations, though it will eventually.
out introducing substantially new effects. However, it is  Figures 3 and 4 show the averaged results of a large num-
known that colored noise can Substantially affect fluctuatiorber of numerical runs. For each value ofind o, 10 000
behavior[17]. realizations were generated. All realizations started at the
As a function of the noise levelr,, there are three dis- origin and escape was defined as the particle reaching
tinct regimes:(1) high noise,o,>0o., where the random ~1. (Recall that the unstable manifold of the saddle lies
walker escapes on a time scale 0'; "N. Here vy depends nearly along the positive axis and is the escape chanhel.
only on the dimensionality of the system and is determined Figure 3 shows the effect of varyingwith the dimen-
by the escape behavior at threshold=0). In Sec. IV itis sionality held fixed aN=4. Notice that all curves asymptote
shown thatvy=2/(4N—1) by appealing to the scaling be- to the same scaling behavior at high noise, and that this
havior of the continuous-timeFokker-Planck equation2) scaling behavior is given by the noise response at threshold
Moderate noise, where,~ o, the random walker under- (e=0). This is because at high noise the random walker
goes transient linear amplification, which brings it into thedoes not “see” the fact that there is a basin pregevttich
vicinity of the saddle on a time scale 6f(N/€) where it can  vanishes at the threshold for linear instability
escape. And(3) low noise, o, <o, where the random For €=0.01, the vertical lines mark the magnitudes of
walker is confined to the saddle-sink connection and the es¢;s=eN=¢* o,=eN"1=¢’, and op=V"Y2/2/3

Ill. THE STEADY-STATE NOISE RESPONSE
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=0.01, while those with closed symbols were generated with
0 €=0. The data were generated as in Fig. 3. As in that figure,
each curve was generated with a maximum noise value one
order of magnitude greater than,=eN=102N. Notice
10* that the thresholdd=0) scaling behaviors depend strongly
on N.
T The solid lines lying in the vicinity of each data set obey
10° =00 the scaling law
g
e T~0, N (11
%, with vy=2/(4N—1). The values of- vy are indicated be-
10 | ¥ ] side each curve. The normalization cons{afsent from Eq.
(11)] was chosen by hand to make the curves easy to com-

pare. The normalizations used were 3, 4, 5, and 6Nor
=1, 2, 3, and 4, respectively.
FIG. 3. The mean escape time in four dimensions as a function
of the noise amplitude, plotted for four different values of the bi- IV. ESTIMATES OF o, AND vy
furcation parameter. Data points are connected by a line for clarity. . .
Notice that all curves asymptote to tlee=0 scaling at high noise. We now turn to the estimates @fy,, the noise level

The vertical lines connecting to the=0.01 data are explained in Where escape shuts down, angl, the scaling exponent for
the text. the escape time at threshold=0) (as well as the high-

noise scaling behavinr
The magnitude obr,,;, can be estimated by considering

= €e™%/2/3. (Similar indications are not made on the Fi. 2 once acain. At low noise the random walk is confined
=0.05, and 0.1 data in order to keep the graph from becon%-'g' gain. wnol walk | :
i

ing too busy) The maximum noise value used in each case o the saddle-sink connection. We can use the linear response

: : 0 noise driving to estimate the rms value|&f|. If this is
one decade larger than, in order to emphasize the smooth : :
behavior of the escape time in the vicinity @f ~x;s. Not substantially less than the distance to the saggdlg¢hen the

shown are numerical calculations that show that the scalin alker will in prac_:t|ce be bound tp the node._ThlsTestlmate IS
. —vy . one by computing the correlation matrig=(xx'), and
behaviorr~ o, " continues up tar,~1, where the escape

1/2
time becomes of order unity and, hence, bottoms out for th

comparing(x3)Y2= C12 with xys.
discrete-time map we considé€For these high noise runs we

€ The linear correlation matrix can be computed as follows:
form the outer product of Ed5) with its adjoint(neglectin

defined escape to B&|~10* to avoid introducing boundary P a5 joint(neg g

effects in the scaling.As the noise level is reduced, the

the nonlinear term for this estimatand take the ensemble
) ; X average over the noise distribution. This leads to a dynam-
high-noise scaling breaks down when~oc. Asa, drops  joq|  equation for the correlation matrix:[C(m)
below o the escape time increases rapidly and effect|verE<X(m)XT(m)>]:
becomes unbounded for, <o min.
Figure 4 shows the effect of varying the dimenshrior C(m+1)=AC(m)AT+ gf7|_ (12
a fixed bifurcation parameter The curves with open sym-
bols were generated with bifurcation parameter fixece at Equation(12) is a linear dynamical system. Hence, if a stable
fixed point exists, there is only one and it has a global basin
6 . . . . . . . . of attraction. Equation12) can be iterated, starting with

10
C(0)=0, hence:

y D 3D C(1)=0?; C(2)=0%(1+AAT), (13

2D 1D
and so forth. It is straightforward to show that the fixed
o L | point, if it exists, is given by
T Cy =01 +AAT+AZ[ATIZ 4+ ATAT] -],
100 b -2/11 o7 -3 i (14)
s The fixed pointC, satisfies the equation

10° } :

C,=AC,AT+0o’l. (15

10" . . , , , , , , We now drop the® subscript for notational hygiene. A little

LU A U L O O N T algebra shows that the entries of the fixed p@nsatisfy

FIG. 4. The mean escape time vs the noise amplitudé=i1, C.= N(C. +C. +C. + 025
2, 3, and 4 dimensions. For eakh the escape time was computed k122 [MCicr 1+ Cheai) + Chaapera 0505
for both e=0.01 and 0. See the text for a full explanation. (16
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for j,k=1,2,... N, with C;=0 understood forj or k 10*
>N. This should be viewed as an iteration scheme for the
matrix entries ofC where one starts with=k=N in the
lower right hand corner and works to the upper left, making
use of the fact tha€ is symmetric.

Now consider the asymptotic behavior ®$1. Using 1 10° L
—A=¢€ [hence +A?=2¢e+0(€?)], and rewriting(16) to
leading order ine gives

10
1
CjkNZ[Cj,k+1+Cj+1,k+Cj+1,k+1+03,5jk]- (17 o
To leading order irg, this implies

) 100 L
oy (1)U [2N—(j+ k]! T T T T
S — 1+ 0(e€)] ' 10" 10t 100 100 100 100 10° 100 10° 10

kK726 | 2¢ (N=j)I(N—K)! 5

(18)
FIG. 5. A summary of twelve numerical runs, rescaled using the
as can be shown by direct substitution. Definsg 1/2¢ and  stretched time scale, 7’=e7/N, and noise scale o’
¥i+k=[2N—=(j+K)J'/(N=j)!(N—K)!, the correlation ma- =(v2/3)a/e’N"" The motivation for these choices is given in the

trix can be written as text. (The prime is not indicated on the axis labels due to limitations
of the graphics routing.The twelve different sets of data represent
'y2,82N*2 73,82'\‘73 three values of the bifurcation paramete=0.1, 0.05, and 0.01
- . for N=1 through 4.
C ‘737 yaBN 3 g B2 19 g
2e 262 B | for escape in this noise range isN/e, and (3) the noise
B2 g 1 cutoff for escape is well approximated oy, -

It remains to derive the high noise scaling laid). Con-

From this it is possible to show that the largest eigenvalue o$ider the 2D case as an example. Returning to(Eg.now
the correlation matribxC is asymptotically~C,,, i.e., take the flow limit to convert this to a pair of ordinary dif-

ferential equationsi.e., takingl —A andb to be both~ 6t

2 2 i 2Nt (20) the time step We also focus only on the threshold behavior
Tx "I Y2| 3¢ (e=0) for reasons stated previously. This gives
and its associated eigenvector points predominantly in the (Xl) 0 1\(x, ( 0
L = + . 23
direction ofx;. Hence ) ~lo ollx) T1x2 (23)
N—-1/2
(x§>1’2~ 0'7]'}/%/2(—) ] (22) Because this is a differential equation, the addition of
noise is a subtle issue. We assume that a proper prescription
2e ise | btle i W that ipti

is taken(e.g., the Stratonovich calculusThis leads to the
following Fokker-Planck equation, which governs the evolu-
tion of the probability densityf(x;,x,,t) [17]:

For the systems studiedNE1,2,3,4) the ratioys/2N 12
varies weakly, hence we choose a nominal value 2.3/
When dealing with largeN, however, this approximation
should be done more carefully. of of of Pf PP
As mentioned before(x?)}?~x,, is the regime where — ==Xy ——X] —+D(—2+ —2> (24)
noise-driven escape begins to shut down. Taking this as our ot ! X2 Xy 0%

threshold for the noise amplitude leads to the following defi- e . . 2
nition of o where the diffusion constait is proportional tas. In what

follows, we assume this equation has already been nondi-
mensionalized. Now introduce the rescalings:

w| S

Omin(€;N)= eN~12, (22

’TEDaot; ngDanj y J:1,2 (25)
Figure 5 displays the results of a dozen different simulations
using dimensions 1 through 4 and a wide range of noisd Nis takes Eq(24) to (f, denotesif/d7, etc)
scales. The escape time has been rescaled by the linear am- a b2 . g
plification time scale £ =N+/€) and the noise is rescaled fr=—D%f, —D &if,, + D o + D¢y, (26)
by omin in €ach cas¢o’'=o, /omin(€;N)], which brings the
noise-driven escape cutoff @' ~O(1). This figure shows with a=a;—ay—ap, b=a,—2a;—ay, c=1+2a;— ay,
several important thingg) the high noise behavior is in- andd=1+2a,—aqy. The scaling exponents are chosen to
sensitive toe but strongly dependent on dimensionali(g) = makea=b=c=0, for reasons to be discussed below. This
when the noise level reaches, the escape time begins to can be done ifog=1/7, a;=—2/7, anda,= —3/7, which
deviate strongly from the high noise behavior. The time scaldorcesd=2/7. Hence, in thé&—0 limit Eq. (26) becomes



3754 E. R. TRACY, X. Z. TANG, AND C. KULP 57

4

fo=—&fe — &+ e, (27) 10

The interpretation is as follows: in the low-noise limit at
threshold €=0) the dominant effects experienced by a ran-
dom walking particle are advection due to the deterministic s |
flow, which is in essence a “folded” shear-type flow at the
origin. (The interested reader is referred to Figure 7.3.1 of
[3] for a diagram). The advection is balanced by diffusion t
only in the direction transverse to the stable manifaldhich
is thex, direction near the origin, because the shearing mo- 10* |
tion develops sharp gradients only in thke direction. The
diffusion in thex, direction is negligible in comparison.
The fact that the scaling exponeag=1/7 implies that
the escape time should scale@sY"~ o, %" 1
In higher dimensions, a similar rescaling argument shows %y
that the scaling exponentsg obey theN+1 conditions o

FIG. 6. The effect of variation of the off-diagonal coupling on
noise-driven escape. The choice of off-diagonal terms is explained
in the text.

aji=aj—ap; j=12,... N—1;

aN=2a1+ ao;
as that should be the most fragile of the systems we have

1+2an— ap=0. (28)  examined in this paper, and take the mathixo be of the
form
The firstN—1 of these can be solved iteratively fay and
[27)) (|e, (1’2:&1_0{0; A3= Uy~ Op= al—Zao, etC), Iead' )\1 alz a13 a14
ng to 0 Ny axg ay
A= : (3D
OZN:C(]__(N_].)CY(). (29) 0 0 )\3 Azy

This equation, in conjunction with the last two of E8),

can now be solved easily, leadingdg=1/(4N—1) and the  A|l 4 x4 matrices can be cast into upper triangular form by
Scaling IaW(ll) Notice that if, instead of the quadratic non- g5 unitary transformati0m18], hence the forn'(gl) is very
linearity in Eq.(10), one had a cubic or some other subdomi-general. We restrict attention to real entries, and keep off-
nant behavior then the scaling exponents will change—albeljiagonal terms positivéor zerg as the introduction of nega-
in a relatively simple manner. tive signs—especially in the terms immediately above the
Pressing on, one finds thatj=—(N+j—1)/(4N—1)  main diagonal—can change the bifurcation from subcritical
forj=1,2,... N. The scale factors that appear in the diffu- to supercritical. All terms immediately above the main diag-
sive terms of theN-dimensional Fokker-Planck equation, onal were kept nonzero and of order unity. The nonlinear
D2~ %, have exponents N-—j)/(4N—1). Hence, all term was unchanged.

but thej=N diffusive term vanish a®—0. This implies First the dependence on the off-diagonal couplings was
that the Fokker-Planck equation has a universal form in th@xamined. In Fig. 6 the results of 5 different runs with
zero-noise limit: =0.01 and various off-diagonal terms are shoftie diago-
nal terms are kept exactly degenerate and equal ta 1

fT:—§2fg1—§3fgz"'—§§f§N+nggN- (300  =0.99. One set of data was generated using the original

form of A for comparison(this is the data set that lies

That is, it involves all of the advective terms, but only the slightly above the otheys Another was generated using all
diffusive term associated with the direction that experiencesff-diagonal terms set to unity, while the other three had the
the greatest linear amplification factbelow threshold ¢  off-diagonal terms chosen at random and order unity.
>0). Clearly, there is only a relatively weak dependence on the
off-diagonal couplings as long as they remain positive and
order unity and the diagonal terms are degenerate.

The effect of breaking the spectral degeneracy was con-

For the results of the preceding sections to be of physicagidered next. The off-diagonal terms were reset to those of
interest they must survive breaking of the exact spectral deEq. (4) and the eigenvalues were assigned the farm1
generacy and uniformity of coupling assumed in E4. —eq;for j=1,...,4. Thevalues ofa; were chosen to be
Once the exact degeneracy is broken the number of free pas;=1; a,=0.1; @3=1, anda,= 10. (Notice they vary by 2
rameters becomes large. The results reported here are onlyoaders of magnitudgAs €| 0 we expect the scaling behavior
preliminary study of this issue, as a full treatment is outsideto approach that of the threshold scaling b+ 4, as indeed
the scope of the paper as well as being an open area dfppens. For larger values gfhowever, other scalings oc-
investigation. Here, we focus on the four-dimensional casegur. This is also to be expected because breaking the spectral

V. BREAKING THE DEGENERACY
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10 T T T 10 T T T

10 10" 0" 0" 0
o c
FIG. 7. The effect of breaking the spectral degeneracy. The FiG. 8. The linearly unstable case. Here two of the eigenvalues

form of the eigenvalues used is described in the text. Three valuege chosen to be unstable, and two are stable, hence the fixed point
of € are shown, as indicated. Also shown are the threshold scaling; the origin is now is a hyperbolic saddle.

laws for N=2 (dotted ling, N=3 (dashed ling andN=4 (dot-

dashed ling unchangel This converts the node into a saddle. The nu-
merical results are shown in Fig. 8. Notice that at high noise

degeneracy also destroys the geometric degeneracy. As thee scaling appears only slightly changed from the linearly

degeneracy is broken more strongly we would expect thétable caséthe solid line is theN=4 threshold scaling At

scaling to be determined by the dimension of any remainingoW noise the random walkers escape much faster than their

geometrically degenerate subspaces. A rough figure of merifnearly stable counterparts, as expected.

for the present case is to compare the spread in eigenvalues,
P P P 9 VI. SUMMARY

AN=Nmax=Amin: (32 In summary, we have shown that Takens-Bogdanov equi-
to their geometric mean, libria have noise response characteristics that are distinct
from normal systems that have diagonalizable linear terms.
)\_E()\l)\z)\s)w)l/‘l_ (33 In particular, the escape time at high noise levels obeys the
scaling law(11) with the exponeniy=2/(4N—1), depend-
Now define ing only on the dimension of the subspace exhibiting geo-
metric degeneracy. A preliminary study shows that these
scaling characteristics are relatively robust under weak
breaking of the degeneracy. Statistical robustness, in spite of
topological fragility, suggests that the nongeneric aspects of
We expect that asy—0 the system should behave as anthe bifurcation are less restrictive than previously thought.

(34

AN
Y N

N-dimensional degenerate system, whileyifs large it will ~ Hence, these effects might be observable in experimental
deviate from this behavior. situations. . _
In Fig. 7 the bifurcation parameter values-0.1, 0.05, Note added in proofAfter this paper was accepted for

and 0.01 were used, giving=0.1, 0.6, and+, respec- Ppublication, the authors became aware of related_ work by
tively. (Whene=0.1,)\4=0:>)\_=0.) These results are com- Manneville [19]. The authors thank Dr. Manneville for
pared with the threshold scaling laws fise=2,3,4. Clearly, ~Pointing out this reference.
for e=0.01 the system behaves essentially as though it were
fourfold degenerate, while witlk=0.1 it scales more like
N=2 (A, and A5 are still degeneraje At the intermediate E.R.T. would like to thank K. Lindenberg and G. Weiss
value (e=0.05) the system arguably scales Iide=3. Using  for helpful and encouraging comments. X.Z.T. would also
only N1, \», and A3 to computey gives y=~0.05, which like to acknowledge the hospitality of the Applied Physics
would imply that these three degrees of freedom are stilDepartment of Columbia University. This work was sup-
degenerate. ported by the U.S. AFOSR and DOE. C.K. was supported by
Finally, we considered the linearlynstablecase by set- the NSF Research Experience for Undergraduates program at
ting A,=1+¢€a, and \,=1+€a, (all other entries were W&M.
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