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Takens-Bogdanov random walks

E. R. Tracy,* X. Z. Tang,† and C. Kulp‡
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Takens-Bogdanov bifurcations have linearized dynamics that are nondiagonalizable. Thenonlinearresponse
of such systems to perturbations is quite distinct from systems with diagonalizable linearizations. While
Takens-Bogdanov systems are of central importance in the theory of local codimension-two bifurcations, their
physical relevance is unclear because they are topologically fragile. Only those properties that are robust under
the breaking of the exact degeneracy required for nondiagonalizability are likely to have any physical signifi-
cance. In this paper we consider the steady-state noise response of degenerate and nearly degenerate nodes in
N dimensions. Escape times are computed for the subcritical case and shown to obey scaling relations that are
different from those of normal systems. The scaling behavior at high noise levels can be extracted from the
related Fokker-Planck equation and is robust to weak breaking of the exact degeneracy.
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I. INTRODUCTION

In this paper we shall be interested in the noise respo
of nonlinear systems that, when linearized about a sta
fixed point, are either nondiagonalizable or very nearly so~in
numerical analysis such linear systems are calledill condi-
tioned!. In the bifurcation literature these systems are said
be of ‘‘Takens-Bogdanov’’ type@1,2#. Such bifurcations are
known to occur in low-dimensional models of bounded sh
flows near the laminar or turbulent transition@4–8#. They
also arise in aeroelastic flutter models@9#, and stall models
for turbines@10#. For a discussion of the related degener
Hopf bifurcation, the reader is referred to Refs.@11,12#.

As a simple example, consider the two-dimensional~2D!
linear flow associated with a stable degenerate node:

S ẋ1

ẋ2
D5S 2e 1

0 2e D S x1

x2
D . ~1!

The threshold for linear instability ise50, where the flow
has a pure shear character and the 232 matrix is nondiago-
nalizable. If one is interested in the bifurcation characte
tics of this system when nonlinear terms are added, then
is led to the theory of normal forms. It is remarkable th
although the theory of normal forms was introduced by Po
caréand Birkhoff, the normal form analysis for Eq.~1! was
not carried out until the 1970s@1,2# ~see Chapter 7 of the
most recent edition of@3# for a very complete discussion!.
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In applications, low-dimensional models are often deriv
via Galerkin projection, or some other reduction schem
onto the center manifold of the much larger—often infinit
dimensional—system@3,9#. The connection between the b
furcation behavior of the low-dimensional model and t
original high-dimensional dynamical system must be ca
fully established, especially when the low-dimensional s
tem is nearly degenerate and, hence, structurally fragile
topological sense. For example, if we nonlinearly perturb
dynamical system~1! about the neutral thresholde50 the
degenerate node can convert into a nondegenerate no
saddle, a stable or unstable spiral. The interested read
referred to the unfolding diagram on p. 367 of@3#, which
shows the variety of behaviors that can occur. Such an
folding diagram reveals how the degenerate topology
modified as parameters are varied. It is possible, howe
that a fragile topological structure can be accompanied
other physically relevant aspects of the dynamics that beh
in a smooth and well-behaved manner. What is meant
‘‘physically relevant’’ depends upon the problem of intere

Here we examine how Takens-Bogdanov systems resp
to noise driving, using the degenerate node of Eq.~3! as our
model. This noise might represent couplings to degrees
freedom that have been projected out by the reduction p
cedure, or the influence of the environment. We focus p
marily on the linearly stable regimee.0 and the subcritical
case, where the addition of nonlinearity introduces a ba
boundary in the vicinity of the node. This implies that, a
though the system is linearly stable, it isnonlinearlyunstable
to perturbations of sufficient size to cross the basin bou
ary. Noise perturbations can lead the system to escape
vicinity of the node, and we are particularly interested
how the average escape time,t, depends on various param
eters, such as the noise levelsh , the bifurcation parametere,
and the dimensionality of the system,N.
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Although the linearly stable case is the focus of this p
per, some of our results are similar to those for the linea
unstablecase, in particular the scaling behavior of the esc
time t at high noise levels. This is because at high no
levels the system does not ‘‘see’’ the small stable basin
rounding the fixed point, even if it exists, and is inste
guided by the larger-scale structure of the phase space
in the vicinity. We mention in particular that for chaot
systems with homoclinic tangencies, Saueret al. @13# also
report power law behavior for theshadowing time, which is
the unstable analog of the escape timet, discussed below
The escape time scaling for the linearly unstable case is
sidered here, briefly, in Sec. V.

Our results show that the noise response of degene
and nearly degenerate, nodes is quite different from the
mal situation where the linearized dynamics is far from d
generacy. In addition, the statistical behavior of the sys
varies smoothly in the vicinity of degeneracy. In this sen
the structural instability of the phase space topology is l
important than one might imagine because the noise ‘‘fre
the system from having to slavishly follow the underlyin
topology. The dynamics is then guided by coarser feature
the phase space flow, which are relatively robust.

Random walks with degenerate linear terms appear no
have received much attention@14#. Aside from the work of
Farrell et al. @5# on the stochastically drivenlinearized
Navier-Stokes equations we are not aware of any prev
work in the literature.~We mention, however, the recen
work of Saueret al. @13#, and Jaeger and Kantz@15#, which
deal with the effect of noise on nonhyperbolic chaotic s
tems. These, however, are globally unstable while we
interested in the effect of noise on a stable fixed point.!

Here we consider simplified discrete-timenonlinearmod-
els in an attempt to gain general insight, though the form
Eq. ~4! was suggested by some low-dimensional models
shearflows discussed in@7#. Maps have the distinct advan
tage of allowing one to generate large ensembles and loo
very long-time behavior.

The outline of the paper is as follows: in Sec. II the nois
free case is discussed. The steady-state noise response
cussed in Sec. III and numerical results for the exactly
generate case presented. The results are easily understo
terms of a few simple scaling relations discussed in Sec.
In Sec. V the effects of breaking the exact degeneracy
examined. In this section the linearlyunstablecase is also
briefly considered. We end with a short summary in Sec.

II. BASIC THEORY: NOISE-FREE DYNAMICS

Consider a nonlinear discrete-time dynamical system iN
dimensions:

xj~m11!5F j„x~m!;p…, m50,1,2 . . . , ~2!

wherex,FPRN, F is a smooth vector function ofx, andp is
a bifurcation control parameter. SupposeF has a fixed point
x* (p), which we take to be the origin. Taylor expanding
first order inx gives ~repeated indices are summed!:

xj~m11!5Ajkxk~m!, j 51,2, . . . ,N, ~3!

with A[¹Fux50 . We takeA to be of Jordan block form:
-
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A[S l 1 . . . 0

0 l 1 ]

• •

] • 1

0 . . . l

D . ~4!

Aside from the diagonal immediately above the main diag
nal, filled here with 1’s, all other off-diagonal terms ind
cated by dots are zero. The eigenvaluel is assumed real and
l2,1, hence the fixed point is either a degenerate nodel
.0), or a degenerate flip node (l,0). The exact degen
eracy of the eigenvalues and the uniformity of the o
diagonal coupling makes the analysis tractable. The resul
scaling relations were then tested numerically and found
be robust if the degeneracy and uniformity are only appro
mate. The treatment of more general upper triangular ma
ces will be discussed elsewhere. It is easy to verify that
above matrix has only one eigenvector~it lies in the x1 di-
rection!, and is therefore not diagonalizable. Neutral stabil
occurs whenl51.

In previous work@16# we studied the impulse response
the degenerate node using a normal form analysis, in Tak
and Bogdanov form@1–3#. It is possible to show that nea
threshold (l'1) the dominant nonlinear term is of the form

xj~m11!5Ajkxk~m!1bx1
n~m!d jN . ~5!

As discussed in@3#, Takens arrived at this result~for the N
5n52 case! using the technique oftopological blowup,
while our work of @16# used asymptotic balance argumen
If this dominant nonlinear term is absent, then one must s
tematically search for the subdominant nonlinearities, a r
topic in itself and well outside the range of the present pap
For the purposes of this paper, we will setb51 and assume
that the dominant nonlinearity is quadratic (n52). The di-
mensionalityN is arbitrary.

Now write l[12e and usee as the bifurcation contro
parameter. Since the nonlinear coupling constant is posit
it is easy to show that Eq.~5! now has a second fixed point a

x1s5eN; x2s5ex1s ; x3s5ex2s ; ... . ~6!

Linearizing about this second fixed point shows that it is
saddle type.@More precisely, the eigenvalues of the linea
ized matrix can have imaginary parts ofO(e), but one of
them is always real and greater than one and its unst
manifold connects back to the node, forming the ‘‘sadd
sink connection’’.#

The stable manifold of the saddle forms the basin bou
ary. The degeneracy of the node causes the saddle to als
nearly degenerate, which forces the basin boundary to
close to the node. The distance of closest approachsc is the
threshold for finite amplitude impulsive perturbations
drive the system unstable. This is summarized in Fig. 1. T
shape of the triangleOAS is determined by the transien
linear amplification factor, which can be estimated as fo
lows @16#: at the initial time,m50, give the system a kick in
the xN direction of magnitude d0 , hence x0
5(0,0, . . . ,d0)T where T denotes transpose. Afterm time
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57 3751TAKENS-BOGDANOV RANDOM WALKS
steps this initial condition moves tox(m)5Amx0 , therefore
x1(m)5@Am#1Nd0 . Some algebra shows that

@Am#1N5S m
N21Dlm112N. ~7!

Takingl512e↑1, rewritingm5t/e with t;O(1), and us-
ing (12e) t/e;e2t ase↓0 leads to

ux1umax;d0e12N. ~8!

~Note that this is also valid forN51.! The maximum occurs
on a time scale of;N/e. The ratioux1umax/d0 is of the same
order asx1s /sc , which leads to an estimate ofsc :

sc;e2N21. ~9!

This scaling behavior was tested numerically in@16# and
found to hold with high precision even if the degeneracy w
weakly broken. This summarizes the impulse response of
undriven system.

III. THE STEADY-STATE NOISE RESPONSE

Now consider the steady-state noise response. That is
~5! is modified by adding a noise driver:

xj~m11!5Ajkxk~m!1x1
2~m!d jN1h j~m! ~10!

with hPRN. The noise is assumed to be Gaussian white w
correlation tensor̂h(n)hT(m)&5sh

2dmnI , and I the N3N
identity matrix. The use of a more general form of whit
noise correlation tensor merely complicates the algebra w
out introducing substantially new effects. However, it
known that colored noise can substantially affect fluctuat
behavior@17#.

As a function of the noise level,sh , there are three dis
tinct regimes:~1! high noise,sh@sc , where the random
walker escapes on a time scalet;sh

2nN. HerenN depends
only on the dimensionality of the system and is determin
by the escape behavior at threshold (e50). In Sec. IV it is
shown thatnN52/(4N21) by appealing to the scaling be
havior of thecontinuous-timeFokker-Planck equation.~2!
Moderate noise, wheresh'sc , the random walker under
goes transient linear amplification, which brings it into t
vicinity of the saddle on a time scale ofO(N/e) where it can
escape. And~3! low noise, sh!sc , where the random
walker is confined to the saddle-sink connection and the

FIG. 1. The geometry of the basin boundary in the neighb
hood of the saddle-node connection.
s
he
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cape time quickly grows without bound as the noise leve
reduced below a critical value,smin . An estimate is devel-
oped in Sec. IV forsmin .

Figure 2 illustrates the moderate- and low-noise regim
for the 2D case with bifurcation parametere50.1. ~The
high-noise walker would leave the figure in a single tim
step.! The unshaded region consists of those points wh
with no noise present, eventually asymptote to the node
the origin. The smooth curves starting at the bottom of
figure represent orbits of the undriven dynamics, with t
four orbits lying in close proximity to the basin bounda
drawn in heavier weight to emphasize the stable and unst
manifolds of the saddle point. Note that thex2 scale andx1
scale differ by a factor ofe. The saddle point@at (x1s ,x2s)
5(eN,eN11)# and the point of closest approach of the ba
boundary to the node@at (x1c ,x2c)5(0,sc)5(0,e2N21)# are
indicated by the open diamonds.

The orbit marked 1 is a moderate-noise random walk w
sh5sc . Notice that it leaves the basin in the vicinity o
(x1c ,x2c), having been ‘‘urged’’ in that direction by the de
terministic part of the dynamics. It leaves the basin in a ti
of O(2/e), then follows the unstable manifold of the sadd
out to large amplitudes.

The orbit marked 2 is a low-noise orbit withsh5smin
5(&/3)e2N21/2, i.e., the noise threshold where escape sh
off ~estimated in Sec. IV!. Notice that the random walk is
confined to the saddle-sink connection. The walker has
escaped after 104 iterations, though it will eventually.

Figures 3 and 4 show the averaged results of a large n
ber of numerical runs. For each value ofe and sh 10 000
realizations were generated. All realizations started at
origin and escape was defined as the particle reachinguxu
'1. ~Recall that the unstable manifold of the saddle l
nearly along the positivex axis and is the escape channel!

Figure 3 shows the effect of varyinge with the dimen-
sionality held fixed atN54. Notice that all curves asymptot
to the same scaling behavior at high noise, and that
scaling behavior is given by the noise response at thres
(e50). This is because at high noise the random wal
does not ‘‘see’’ the fact that there is a basin present~which
vanishes at the threshold for linear instability!.

For e50.01, the vertical lines mark the magnitudes
x1s5eN5e4, sc5e2N215e7, and smin5e2N21/2A2/3

-

FIG. 2. Typical random walk behavior for a 2D map.
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3752 57E. R. TRACY, X. Z. TANG, AND C. KULP
5e15/2&/3. ~Similar indications are not made on thee
50.05, and 0.1 data in order to keep the graph from bec
ing too busy.! The maximum noise value used in each cas
one decade larger thanx1s in order to emphasize the smoo
behavior of the escape time in the vicinity ofsh;x1s . Not
shown are numerical calculations that show that the sca
behaviort;sh

2nN continues up tosh;1, where the escap
time becomes of order unity and, hence, bottoms out for
discrete-time map we consider.~For these high noise runs w
defined escape to beuxu'104 to avoid introducing boundary
effects in the scaling.! As the noise level is reduced, th
high-noise scaling breaks down whensh;sc . As sh drops
below sc the escape time increases rapidly and effectiv
becomes unbounded forsh!smin .

Figure 4 shows the effect of varying the dimensionN for
a fixed bifurcation parametere. The curves with open sym
bols were generated with bifurcation parameter fixed ae

FIG. 3. The mean escape time in four dimensions as a func
of the noise amplitude, plotted for four different values of the
furcation parameter. Data points are connected by a line for cla
Notice that all curves asymptote to thee50 scaling at high noise
The vertical lines connecting to thee50.01 data are explained in
the text.

FIG. 4. The mean escape time vs the noise amplitude inN51,
2, 3, and 4 dimensions. For eachN, the escape time was compute
for both e50.01 and 0. See the text for a full explanation.
-
is

g

e

y

50.01, while those with closed symbols were generated w
e50. The data were generated as in Fig. 3. As in that figu
each curve was generated with a maximum noise value
order of magnitude greater thanx1s5eN51022N. Notice
that the threshold (e50) scaling behaviors depend strong
on N.

The solid lines lying in the vicinity of each data set ob
the scaling law

t;sh
2nN ~11!

with nN[2/(4N21). The values of2nN are indicated be-
side each curve. The normalization constant@absent from Eq.
~11!# was chosen by hand to make the curves easy to c
pare. The normalizations used were 3, 4, 5, and 6 forN
51, 2, 3, and 4, respectively.

IV. ESTIMATES OF smin AND nN

We now turn to the estimates ofsmin , the noise level
where escape shuts down, andnN , the scaling exponent fo
the escape time at threshold (e50) ~as well as the high-
noise scaling behavior!.

The magnitude ofsmin can be estimated by considerin
Fig. 2 once again. At low noise the random walk is confin
to the saddle-sink connection. We can use the linear resp
to noise driving to estimate the rms value ofux1u. If this is
substantially less than the distance to the saddlex1s then the
walker will in practice be bound to the node. This estimate
done by computing the correlation matrix,C[^xxT&, and
comparing^x1

2&1/25C11
1/2 with x1s .

The linear correlation matrix can be computed as follow
form the outer product of Eq.~5! with its adjoint~neglecting
the nonlinear term for this estimate! and take the ensembl
average over the noise distribution. This leads to a dyna
ical equation for the correlation matrix: @C(m)
[^x(m)xT(m)&#:

C~m11!5AC~m!AT1sh
2 I . ~12!

Equation~12! is a linear dynamical system. Hence, if a stab
fixed point exists, there is only one and it has a global ba
of attraction. Equation~12! can be iterated, starting with
C(0)50, hence:

C~1!5sh
2; C~2!5sh

2~ I 1AAT!, ~13!

and so forth. It is straightforward to show that the fixe
point, if it exists, is given by

C* 5sh
2@ I 1AAT1A2@AT#21¯1An@AT#n1¯#.

~14!

The fixed pointC* satisfies the equation

C* 5AC* AT1sh
2 I . ~15!

We now drop the* subscript for notational hygiene. A little
algebra shows that the entries of the fixed pointC satisfy

Cjk5
1

12l2 @l~Cj ,k111Cj 11,k!1Cj 11,k111sh
2d jk#

~16!

n

y.
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57 3753TAKENS-BOGDANOV RANDOM WALKS
for j ,k51,2, . . . ,N, with Cjk50 understood forj or k
.N. This should be viewed as an iteration scheme for
matrix entries ofC where one starts withj 5k5N in the
lower right hand corner and works to the upper left, mak
use of the fact thatC is symmetric.

Now consider the asymptotic behavior asl↑1. Using 1
2l5e @hence 12l252e1O(e2)#, and rewriting~16! to
leading order ine gives

Cjk;
1

2e
@Cj ,k111Cj 11,k1Cj 11,k111sh

2d jk#. ~17!

To leading order ine, this implies

Cjk;
sh

2

2e S 1

2e D 2N2~ j 1k! @2N2~ j 1k!#!

~N2 j !! ~N2k!!
@11O~e!#

~18!

as can be shown by direct substitution. Definingb[1/2e and
g j 1k[@2N2( j 1k)#!/(N2 j )!(N2k)!, the correlation ma-
trix can be written as

C;
sh

2

2e S g2b2N22 g3b2N23 ...

g3b2N23
� b2

2b2 b

... b2 b 1

D . ~19!

From this it is possible to show that the largest eigenvalue
the correlation matrixC is asymptotically;C11, i.e.,

sx1

2 ;sh
2g2S 1

2e D 2N21

~20!

and its associated eigenvector points predominantly in
direction ofx1 . Hence

^x1
2&1/2;shg2

1/2S 1

2e D N21/2

. ~21!

For the systems studied (N51,2,3,4) the ratiog2
1/2/2N21/2

varies weakly, hence we choose a nominal value of 3/&.
When dealing with largerN, however, this approximation
should be done more carefully.

As mentioned before,̂x1
2&1/2;x1s is the regime where

noise-driven escape begins to shut down. Taking this as
threshold for the noise amplitude leads to the following de
nition of smin :

smin~e;N![
&

3
e2N21/2. ~22!

Figure 5 displays the results of a dozen different simulati
using dimensions 1 through 4 and a wide range of no
scales. The escape time has been rescaled by the linea
plification time scale (t8[Nt/e) and the noise is rescale
by smin in each case@s8[sh /smin(e;N)#, which brings the
noise-driven escape cutoff tos8;O(1). This figure shows
several important things:~1! the high noise behavior is in
sensitive toe but strongly dependent on dimensionality,~2!
when the noise level reachessc , the escape time begins t
deviate strongly from the high noise behavior. The time sc
e

g

f

e

ur
-

s
e
m-

le

for escape in this noise range is;N/e, and ~3! the noise
cutoff for escape is well approximated bysmin .

It remains to derive the high noise scaling law~11!. Con-
sider the 2D case as an example. Returning to Eq.~5!, now
take the flow limit to convert this to a pair of ordinary di
ferential equations~i.e., takingI 2A and b to be both;dt
the time step!. We also focus only on the threshold behavi
(e50) for reasons stated previously. This gives

S ẋ1

ẋ2
D5S 0 1

0 0D S x1

x2
D1S 0

x1
2D . ~23!

Because this is a differential equation, the addition
noise is a subtle issue. We assume that a proper prescrip
is taken~e.g., the Stratonovich calculus!. This leads to the
following Fokker-Planck equation, which governs the evo
tion of the probability density,f (x1 ,x2 ,t) @17#:

] f

]t
52x2

] f

]x1
2x1

2 ] f

]x2
1DS ]2f

]x1
2 1

]2f

]x2
2D , ~24!

where the diffusion constantD is proportional tosh
2. In what

follows, we assume this equation has already been no
mensionalized. Now introduce the rescalings:

t[Da0t; j j[Da jxj , j 51,2. ~25!

This takes Eq.~24! to ~f t denotes] f /]t, etc.!

f t52Daj2f j1
2Dbj1

2f j2
1Dcf j1j1

1Ddf j2j2
, ~26!

with a5a12a22a0 , b5a222a12a0 , c5112a12a0 ,
and d5112a22a0 . The scaling exponents are chosen
makea5b5c50, for reasons to be discussed below. Th
can be done ifa051/7, a1522/7, anda2523/7, which
forcesd52/7. Hence, in theD→0 limit Eq. ~26! becomes

FIG. 5. A summary of twelve numerical runs, rescaled using
stretched time scale, t8[et/N, and noise scale s8
[(&/3)s/e2N21/2. The motivation for these choices is given in th
text. ~The prime is not indicated on the axis labels due to limitatio
of the graphics routine.! The twelve different sets of data represe
three values of the bifurcation parameter~e50.1, 0.05, and 0.01!
for N51 through 4.
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3754 57E. R. TRACY, X. Z. TANG, AND C. KULP
f t52j2f j1
2j1

2f j2
1 f j2j2

. ~27!

The interpretation is as follows: in the low-noise limit
threshold (e50) the dominant effects experienced by a ra
dom walking particle are advection due to the determinis
flow, which is in essence a ‘‘folded’’ shear-type flow at th
origin. ~The interested reader is referred to Figure 7.3.1
@3# for a diagram.! The advection is balanced by diffusio
only in the direction transverse to the stable manifold, which
is thex2 direction near the origin, because the shearing m
tion develops sharp gradients only in thex2 direction. The
diffusion in thex1 direction is negligible in comparison.

The fact that the scaling exponenta051/7 implies that
the escape time should scale asD21/7;sh

22/7.
In higher dimensions, a similar rescaling argument sho

that the scaling exponentsa j obey theN11 conditions

a j 115a j2a0 ; j 51,2, . . . ,N21;

aN52a11a0 ;

112aN2a050. ~28!

The firstN21 of these can be solved iteratively fora1 and
a0 ~i.e., a25a12a0 ; a35a22a05a122a0 , etc.!, lead-
ing to

aN5a12~N21!a0 . ~29!

This equation, in conjunction with the last two of Eq.~28!,
can now be solved easily, leading toa051/(4N21) and the
scaling law~11!. Notice that if, instead of the quadratic no
linearity in Eq.~10!, one had a cubic or some other subdom
nant behavior then the scaling exponents will change—al
in a relatively simple manner.

Pressing on, one finds thata j52(N1 j 21)/(4N21)
for j 51,2, . . . ,N. The scale factors that appear in the diff
sive terms of theN-dimensional Fokker-Planck equatio
D112a j 2a0, have exponents 2(N2 j )/(4N21). Hence, all
but the j 5N diffusive term vanish asD→0. This implies
that the Fokker-Planck equation has a universal form in
zero-noise limit:

f t52j2f j1
2j3f j2

¯2j1
2f jN

1 f jNjN
. ~30!

That is, it involves all of the advective terms, but only t
diffusive term associated with the direction that experien
the greatest linear amplification factorbelow threshold (e
.0).

V. BREAKING THE DEGENERACY

For the results of the preceding sections to be of phys
interest they must survive breaking of the exact spectral
generacy and uniformity of coupling assumed in Eq.~4!.
Once the exact degeneracy is broken the number of free
rameters becomes large. The results reported here are o
preliminary study of this issue, as a full treatment is outs
the scope of the paper as well as being an open are
investigation. Here, we focus on the four-dimensional ca
-
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as that should be the most fragile of the systems we h
examined in this paper, and take the matrixA to be of the
form

A[S l1 a12 a13 a14

0 l2 a23 a24

0 0 l3 a34

0 0 0 l4

D . ~31!

All 4 34 matrices can be cast into upper triangular form
a unitary transformation@18#, hence the form~31! is very
general. We restrict attention to real entries, and keep
diagonal terms positive~or zero! as the introduction of nega
tive signs—especially in the terms immediately above
main diagonal—can change the bifurcation from subcriti
to supercritical. All terms immediately above the main dia
onal were kept nonzero and of order unity. The nonline
term was unchanged.

First the dependence on the off-diagonal couplings w
examined. In Fig. 6 the results of 5 different runs withe
50.01 and various off-diagonal terms are shown~the diago-
nal terms are kept exactly degenerate and equal to 12e
50.99!. One set of data was generated using the origi
form of A for comparison~this is the data set that lie
slightly above the others!. Another was generated using a
off-diagonal terms set to unity, while the other three had
off-diagonal terms chosen at random and order un
Clearly, there is only a relatively weak dependence on
off-diagonal couplings as long as they remain positive a
order unity and the diagonal terms are degenerate.

The effect of breaking the spectral degeneracy was c
sidered next. The off-diagonal terms were reset to those
Eq. ~4! and the eigenvalues were assigned the forml j[1
2ea j for j 51, . . . ,4. Thevalues ofa j were chosen to be
a151; a250.1; a351, anda4510. ~Notice they vary by 2
orders of magnitude.! As e↓0 we expect the scaling behavio
to approach that of the threshold scaling forN54, as indeed
happens. For larger values ofe, however, other scalings oc
cur. This is also to be expected because breaking the spe

FIG. 6. The effect of variation of the off-diagonal coupling o
noise-driven escape. The choice of off-diagonal terms is explai
in the text.
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degeneracy also destroys the geometric degeneracy. A
degeneracy is broken more strongly we would expect
scaling to be determined by the dimension of any remain
geometrically degenerate subspaces. A rough figure of m
for the present case is to compare the spread in eigenva

Dl[lmax2lmin , ~32!

to their geometric mean,

l̄[~l1l2l3l4!1/4. ~33!

Now define

g[
Dl

l̄
. ~34!

We expect that asg→0 the system should behave as
N-dimensional degenerate system, while ifg is large it will
deviate from this behavior.

In Fig. 7 the bifurcation parameter valuese50.1, 0.05,
and 0.01 were used, givingg50.1, 0.6, and1`, respec-
tively. ~Whene50.1,l450⇒l̄50.! These results are com
pared with the threshold scaling laws forN52,3,4. Clearly,
for e50.01 the system behaves essentially as though it w
fourfold degenerate, while withe50.1 it scales more like
N52 ~l1 and l3 are still degenerate!. At the intermediate
value (e50.05) the system arguably scales likeN53. Using
only l1 , l2 , and l3 to computeg gives g'0.05, which
would imply that these three degrees of freedom are
degenerate.

Finally, we considered the linearlyunstablecase by set-
ting l2511ea2 and l4511ea4 ~all other entries were

FIG. 7. The effect of breaking the spectral degeneracy. T
form of the eigenvalues used is described in the text. Three va
of e are shown, as indicated. Also shown are the threshold sca
laws for N52 ~dotted line!, N53 ~dashed line!, and N54 ~dot-
dashed line!.
the
e
g
rit
es,

re

ill

unchanged!. This converts the node into a saddle. The n
merical results are shown in Fig. 8. Notice that at high no
the scaling appears only slightly changed from the linea
stable case~the solid line is theN54 threshold scaling!. At
low noise the random walkers escape much faster than t
linearly stable counterparts, as expected.

VI. SUMMARY

In summary, we have shown that Takens-Bogdanov eq
libria have noise response characteristics that are dis
from normal systems that have diagonalizable linear ter
In particular, the escape time at high noise levels obeys
scaling law~11! with the exponentnN52/(4N21), depend-
ing only on the dimension of the subspace exhibiting g
metric degeneracy. A preliminary study shows that the
scaling characteristics are relatively robust under we
breaking of the degeneracy. Statistical robustness, in spit
topological fragility, suggests that the nongeneric aspect
the bifurcation are less restrictive than previously thoug
Hence, these effects might be observable in experime
situations.

Note added in proof.After this paper was accepted fo
publication, the authors became aware of related work
Manneville @19#. The authors thank Dr. Manneville fo
pointing out this reference.
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FIG. 8. The linearly unstable case. Here two of the eigenval
are chosen to be unstable, and two are stable, hence the fixed
at the origin is now is a hyperbolic saddle.
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